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A METHOD FOR THE DESIGN OF SWEPTBACK WINGS WARPED TO PRODUCE SPECIFIED
FLIGHT CHARACTERISTICS AT SUPERSONIC SPEEDS ! :

By Warren A. TUCKER

SUMMARY

One of the problems connected with the sweptback wing 1s the
difficulty of controlling the location of the center of pressure and
Lence the pitching moment. A method is presented for design-
ing a wing to be self-trimming at a given set of flight conditions.
Coneurrently, the spanwise distribution of load on the wing is
made to be approximately elliptical, in an effort to maintain low
wing drag.

These flight characteristics are achieved by warping the wing
out of a plane. The required warp 18 determined by the values
of the coefficients of a four-term series describing the pressure
distribution; these values in turn are determined from four con-
ditions on the lift, pitching moment, and spanwise load dis-
tribution.

The method is directly applicable to several wing plan forms,
ineluding the triangle and the sweptback plan form with finite
1ips, under the restriction that the leading edge must be subsonic
and the trailing edge must be supersonic. The application to
any specific problem 1is svmpliyfied to a routine computational
procedure by the presentation of certain basic data in tabular
Jorm. A discussion is given of some points to be considered in
the application of the method to a practical case, and several
representative examples are worked out. The resulting wings
are shown to be ones which might practicably be built.

INTRODUCTION

The evolution of the sweptback wing for efficient flight at
supersonic speeds has reached the point where the stability
and control problems are being investigated. This situation
implies that not only the lift and drag of the wing but also
the pitching moment must be considered in relation to the
airplane as a8 whole.

In order to be truly efficient at the design Mach number,
the wing should produce the design lift coefficient without
creating about the airplane center of gravity a pitching
moment that would require a large deflection of the trimming
device (with a correspondingly large drag). In addition, it
is generally desirable that the spanwise distribution of 1ift be
as nearly elliptical as possible and that any adverse pressure
gradients on the wing be small so as to retard separation of
the flow, These two conditions are not sufficient to guaran-
tee that the wing drag will be & minimum because at super-
sonic speeds the drag due to lift is also dependent on the
chordwise loading; they are, however, conducive to low wing
drag.

The use of wings warped to produce a constant pressure
over the surface has been proposed to eliminate the large
adverse pressure gradients encountered with the flat wing.

1 Bupersedes recently declassified NACA RM L51F03, 1951,

For a given plan form, however, a uniform pressure distribu-
tion allows no control over the pitching moment. The wing
warp necessary to produce certain other pressure distribu-
tions has been derived (vef. 1), but these distributions do not
lend themselves readily to the control of pitching moment;
in fact, the conical nature of the pressure distributions fixes
the center of pressure at the center of area for triangular
wings.

In the present report, data are presented from which the
wing warp necessary to produce a certain type of pressure
distribution may be determined. A development is then
given in which certain constants appearing in the expression
for the pressure distribution’ are determined by conditions
on the lift, pitching moment, and spanwise load distribution.
In this manner a method is derived for designing a wing of
given plan form, operating at a given supersonic Mach num-
ber, to have a specified lift coefficient, a specified center of
pressure, and & nearly elliptical spanwise load distribution.
Although the pressure gradients are not controlled directly
in the method, the type of pressure distribution used insures
that for most reasonable design conditions the gradients will
not be excessive. There is no reason to believe that a con-
figuration using & self-trimming device designed by this
method will necessarily have a lower drag than will a simi-
lar configuration using a flat wing and a deflected trimming
device. The possibility does exist, however, and should
probably be investigated.

The method is applicable to a wide class of wing plan forms
shown in figure 1; the principal requirement is that the lead-
ing edge must be subsonic and the trailing edge must be
supersonic. The presentation is made in a form suitable
for engineering uss, and a table and computational form are
provided so that the application of the method is reduced to
routine computation.

F N\ —Mach line

Figurs 1.—Plan forms to which the method is applicable.
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SYMBOLS
a(1—)N)
A= B ==
pm A1

locsal chord
cr root chord
- 201N
c mean aerodynamie chord, Sf Fdy= ICESY
o Jocal 1t coefficient, Llftonchordwii stripdyinwidth
el 5ift coefficient, Ig‘%-"’
Cn pitching-moment coefficient, positive when pitch-
ing moment tends to move wing apex up,
Pitching moment
qSc
=
my
. Tip chord
A taper ratio, Root chord
m cotangent of sweepback angle of leading edge
(see fig. 2)
m cotangent of sweepback angle of trailing edge
(see fig. 2)
M free-stream Mach number
n=p8m (see fig. 3)
Pr static pressure on lower surface of wing
Po static pressure on upper surface of wing
P lifting-pressure coefficient, Z’i’q‘ﬂ
q free-stream dynamic pressure
rE% (see fig. 3)
8 wing semispan (see fig. 2)
o=l
8
S wing area
z,y rectangular coordinates parallel and normal, re-
spectively, to free stream, with origin at wing
apex (see fig. 2)
z’ distance behind leading edge measured in free-
stream direction
Zo distance of moment axis behind wing apex (see
_ fig. 5)
2 distance of moment axis behind leading edge of
mean aerodynamic chord (see fig. 5)
z distance perpendicular to zy-plane, positive up
ANAL&SIS
GENERAL

A convenient method is derived in reference 2 for finding
the wing shape corresponding to & given pressure distribu-
tion. In the present report, the lifting-pressure distribution
over the wing is taken to be of the form

~

P=C'+C'z+Cy |+ 0y ()
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Fieure 2.—Axis system for pressure distribution. s

k=, el
m
where the axis system is that shown in figure 2, and Cy/, 0,
¢y, and C) are as yet arbitrary constants. Other terms
could have been included in the series but the terms shown
gave acceptable results without requiring undue labor.
For convenience, the coefficients of the series may bo replaced
by others similar in nature such that the lifting-pressure
distribution can be expressed by the following equation:

P 01 1—k 02 z 03
C,[, Jrl A UL Cr CL + (2)

For purposes of calculation, the wing is assumed to have
no thickness so that the shape derived is actually the mean
surface of the wing. Within the assumptions of the linear-
ized theory, an arbitrary thickness distribution, symmetrical
above and below the mean surface, can then be added with
no effect on the lift and pitching moment. ,

Suitable integrations of the pressure distribution over
the plan form may be performed to obtain equations for
the lift coefficient, the pitching-moment coefficient, and the
spanwise load distribution. One condition may then be
imposed on the lift, one on the pitching moment, and two
on the spanwise load distribution. This procedure results
in four linear equations in the four unknowns C,/Cy, G/CL,
C;/Cz, and Cy/C;. The values for these constants may then
be substituted into equation (2), and the shape of the wing
(that is, the warp) necessary to produce this pressure
distribution can be found by the method of reference 2.

The foregoing material has described the method in general
terms. In the following sections more detailed descriptions
are given: First, of the procedure used to find the warp
corresponding to each component of the pressure distribu-
tion; second, of the method used to determine the constants
for the case of plan forms having pointed tips; and last,
of the corresponding procedure for plan forms having finite
tip chords. Although the determination of the constants
is in principle the same for both types of plan forms, certain
simplifications occurring for the pointed-tip case malke not
only the actual numerical work of determining the constants
but also the exposition of the procedure simpler for this case.
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WARP

The warps or wing shapes necessary to produce the several
components of the pressure distribution given in equation
(2) are first found separately as functions of the four constants
CJC, GfCy,, C5/C;, and CyfC.. Later, after numerical
values of the constants have been determined by the condi-
tions imposed on the lift, pitching moment, and spanwise
load distribution, the separate shapes are superimposed
to form the final warped wing.

The general idea in finding each wing shape is first to

determine the slope of the wing surface (2—; associated

=0
with the pressure distribution under consideration and then
to integrate this slope in the z-direction to get the z-ordinate
at any point (the direction of z is taken mutually perpendicu-
lar to z and y, positive upwards). Of the available methods
for finding the wing slope corresponding to a given pressure
distribution, that presented in reference 2 was chosen for
the particular problem. The principal advantage of this
method is that it eliminates the need for considering z in
the integrations involved and so simplifies the integrations.
The slope of the wing surface corresponding to each term
of equation (2) is found by application of equations (8) and
(17) of reference 2. The wing shape as a displacement from
the z=0 plane is then found by integrating the slope in the

z-direction; thus,
Z_I dx)s =0 (3)

The following equations result for the wing shapes corre-
sponding to the four components of the pressure:

C C
Cp, (= Cp (#
2= LmnI) xR = OL> 1 |:21,/l n3r? ZCosh‘l l—l—
| 14
4/1—n2(147) cosh™! Y +
+1—n2(1—7) cosh™! 1(1 n:) :] (42)

a, 0‘-’) K 2)
2= Cr #*Ry= 80L fé{dl—nﬁ—%’cosh“‘l%l—l—

,__1 == [ni (12—r2)+r+1":| cosh™!

7 l—n l: 2(12_72) r—l—r’:l cosh™!

14-n%

A
1—n*r

=)

(4b)

Cr % % %‘) 1[5
23 L PRy= 3 L ﬁg[‘g‘-\)l—nzﬁ—

8
(1 —l—3r’—% n’r“) cosh"‘ln—1r| +

A+r?+20—nH (4
241—n?
(1—r)?—2(1—n®)(r—r%
24/1—n?

cosh™1

cosh™!

14-n?r

1—n?r
n(1—r)

n(l+7)

_l_.

]

(40)
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0@ (@) 1 S,
3}_3551%% TP — 67 cosh-1|%_|+
(1_7#)3/2 [6 9n*+2nt 4r9) +2 3n’ (r—1%)—

| = (1+r3):| cosh~ %_% +
(1—17,2)3'2 [6 ottt . 2

} (4d)

The significance of the quantities » and 7 is most clearly
seen by reference to figure 3. Calculations have been made
of the quantities R, R, Ry, and Ry, which are in a certain
sense the conical parts of the wing shapes, and the results
are presented in figure 4 and table I. The figure is intended
to be merely illustrative; the results in the table should be
used for actual calculations. A study of the figure provides
& qualitative idea of the various wing shapes. One interest-
ing fact to notice is that no infinities occur at the center line
(r=0) for the cases in which the pressure is proportional to

— (1—7-3)] cosh~ 1| 1— n:)

z and to 9. (Compare with the shapes derived in ref. 1.)
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Frauen 3.—Definitions of r and n: r=L="Y l—ﬂm
U 1m:

EVALUATION OF CONSTANTS FOR POINTED-TIP WINGS (A=0)

The pressure distribution given by equation (2) is inte-
grated over the plan form to obtain an expression for the lift
of the wing. If the limits shown in figure 5 are used, the
following equation expresses the value of the lift:

Lift
220, f L i —;dz (5)
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If the indicated operations are carried out and the lift

i

04
coefficient is formed, the following equation results: \
01 2—k 02 L 1 03 L1 04 | Al
I=gt3 otigtsg © o "‘l
The pitching moment about an axis a distance x; behind 'I"
the wing apex may also be found by the following equation: o :\ L~
Ly \
L crb— .
M__ o0, f dy | ™ @—ax0) f,- dz @)
q 0 yim L Ry
Jdr -02 -
n
n o)
O.
) . ‘ -04 - /
i
-1F 06
R
(c)
AP S -
(c) Ra.
Ficore 4 —Continued.
=3
.03
(a)
-4 1 I L ! 1
o 2 p 8 1.0 02
(a) R].
Frgure 4.—Values of Ry, Ra, Ry, and R;.
. N\
01}
0
Ra
-0t
-o02f
-.03-
(b)
185 2 . C 8 10 ~045
r
(b) B2
F1gure 4—Continued.

(@ R
FiGtre 4 —Concluded
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TABLE I.—VALUES QF R,, R, Rs, B

n
T 0.1 0.2 0.3
B R R R R R By Ry R R Ry Ry
(] —o @ Q. 0260 —@ —{0. 0870 © 0. 0250 —o —0. 0930 © 0.0240
.02 —0. 4663 —~. 0817 0.1119 . —0.4276 — 0.1099 L0244 —0. 4810 —.4810 0.1076 0233
04 ~. 3581 - .0579 . —. 3623 - . L0228 - —. 0025 . 0535 .0218
. —-.2017 —.0708 L0274 0217 —.2979 - L0254 L0208 - -. 00156 . 0230 .0197
. - —~. 0784 . 0068 .0193 —. 2523 - . 0047 .0183 - - .0023 .0173
.10 —. 2109 -, 0767 - . 0186 —-.2171 —. 0818 —.0104 .0161 - - —.0129 .0145
. —. 1825 —.0749 ~.0198 . 0187 —.1884 —. 0709 —. 0219 .0127 —. 1969 - —. 0244 .0118
.14 —.1681 —. 0728 - . 0106 —.1643 —.0778 - . 0097 —. 1729 - - . 0088
.18 -~ 1372 - —_ 0076 —. 1435 —. 0755 - 0066 —.1519 - - . 0055
.18 —~. 1101 - —~. 0413 . —. 1248 - - . 0035 -. 1337 - - 0024
. —. 1030 - - . 0014 —. 1081 - —. 0475 L0004 —-. 1176 - —. (501 -
.24 —.0770 - —. 0509 - —. 0815 - - —. 0056 —. 0889 —.0713 - -
.28 —~. 0525 - —. 0533 —.0100 —. 0586 - - —.0111 - - - —.0123
.32 —.0332 -. 0474 —. 0533 —.0149 —. 0343 - - —. 01569 —. 0478 - - —. 0172
.38 —.0167 - —. 0518 —. 0189 —. 0228 - - -—. 0200 —. 0310 - -. 0568 —.0213
.40 —.0029 - —.0485 -. —.0085 —- - —. 0233 —. 0168 - - —. 0243
44 .0008 - —. 0442 - . 0039 —. 0317 - —:0254 - - - —. 0268
.48 . 0205 —.0198 —. 0390 - 0146 —. 0248 —. 0413 -—. 0288 . - - —. (281
.53 L0298 ~.0128 —. 0331 — . 0239 —. 0181 - —. 0268 .0160 - - -—. 0284
.58 0376 - —. (268 —. 0247 .0320 —. 0106 - —. (260 .0242 —. 0166 - —.0278
.60 0445 . 0000 -. 0201 - .0388 —. 0038 - —. 0241 .0311 —. 0097 - -
.85 . 0616 . —. 0116 —.0192 . —.0139 - .0383 —.0014 —.0169 - 0222
.70 . 0568 0164 —. 0020 —.0142 0511 .0120 - -—. 0158 .0438 . - —.0173
.75 . (605 0232 . 0053 —. 0082 0550 .0188 . 0030 —. 0086 0479 0134 —. 0001 —.0114
.80 . 0825 . 0280 L0128 —. 0016 0573 . 0247 .0105 —. 0029 . 0503 .0164 . 0074 —~—. 0047
.82 . 0029 . 0308 0158 .0013 0577 L0287 .0132 —. 0002 . 0508 .02156 L0102 -
.84 . 0630 . 0325 0180 . . . 0284 . 0157 0028 .0510 . L0127 . 0007
.88 .0628 . 0340 L0203 .0067 L0575 .0308 .0179 . 0052 L0509 .0249 L0150 . 0034
.88 . 0622 . 0351 L0222 . L0571 0311 . 0078 . 0505 0262 0170 .0058
.00 .0813 . 0380 .(238 .0116 . 0563 .0319 . 0216 0101 . 0458 L0272 .0187 . 0083
.01 . 0600 . 0361 245 .0126 0567 .0322 . 0222 .0112 . 0493 . 0275 L0194 0094
.02 . 0599 . 0362 . 0250 .0136 . 0550 .0323 .0228 .0122 . 0488 0277 0199 .0103
.03 , 0501 . (361 0254 0144 . 0542 .0323 (232 .0130 479 277 . 0203 .0113
M . 0681 . 0380 . 0256 .0162 .0532 . L0234 .0138 0470 0277 . 0208 .0120
.85 . 0570 . . 0250 . 01567 . 0621 . 0319 . 0235 .0144 0460 .0275 . 0208 .0128
.08 . 0558 .0351 . 02585 0161 .0507 .0313 . 0233 .0146 L0448 L0270 L0207 .0130
.07 L0541 . . 0251 .0162 L0494 L0307 0230 .0148 L0434 L0264 .0203 .0132
.08 . 0524 .0331 .0159 0478 . 0298 L0223 . 0146 0419 L0254 .0197 .0130
.09 . 0500 .0316 0231 .0152 . . (281 .0211 . 0140 . 0396 0240 .0188 L0124
1,60 . 0466 . . 0207 .0133 0421 . 0254 0187 .0121 _ .0359 0214 .0163 .0108
TABLE I.—VALUES OF R, R, Rs, R—Continued
n
4 \
r . ‘/ 04 0.5 0.8
2 .
R R Ry \R(‘/ P&l Ry Ry Ry Ry Ry Ry Ry
0 - —0.1013 @ 0.0229 S ~0.1008 © 0.0219 —c —0.1189 ] 0.0210
.02 —0, 4011 —. 1010 0. 1049 .0223 —0. 5026 —. 1095 0.1021 L0212 —0. 5153 ~. 1188 0.09% L0203
JH - —. 1003 . —. 304 —. 1087 (481 .0197 - -.1178 . .0187
- .08 —.3165 - 1 . 0187 - —. 1078 0177 .0176 —. 3408 ~. 1167 .0147 . 0168
.03 - —. 0977 ~—. 0004 .0162 — 2824 —. 1062 - 0152 —. 2050 —. 1153 —. 0081 .0142
.10 =257 —. 0860 -—. 0158 . 0135 — 2471 —. 1046 —. 0184 0124 —. 2597 —. 1136 —. 0213 .0114
.12 - -. 0041 - .0105 —.2184 —. 1028 - . 0003 ~—.2310 —.1118 - .
.14 —. 1828 —. 0020 —. 0361 0075 —~. 143 —. 10056 - . 0064 - —. 1095 —_ .
.16 —. 1620 —, 0897 —, 0431 . -.1740 - —. 0458 . 0032 —.1859 —. 1071 —. 0402 . 0022
.1 —. 1438 —.0872 —. 0487 0012 -.15562 ~. 0988 —. 0518 . 0001 —. 1676 ~. 1046 - —.0010
] —. 1276 —. 0846 -. 0529 -.0010 —.1389 —. 0929 - —. 0031 —.1514 —.1019 —. 0501 -
.24 —. 0999 —.0783 —. 0585 - - 111 —. 0872 —. 0616 —. 0093 - - —. -—. 0104
.28 -—.0769 - —. 0810 —.0138 —. 0881 —. 0809 - —.0148 —.1003 - —- —. 0161
.32 - - —. 0813 —. 0185 —. 0888 —.0743 - —. 0199 ~. 0807 —. 0831 - —.0213
.38 - - —. 0597 —. 0227 —. 0518 —. 0674 - —. 0242 ~.0838 —.0761 - —. 0256
.40 - - —. 0567 —. 0260 —.0373 - - —. 0276 —. 0461 - - -
.44 —~.0138 —. 0461 —. 0526 —. 0284 —. 0250 - —. 0580 —. 0303 — —. 0014 —. (601 —. (318
<48 —. 0029 -~ 0370 -. (476 —. 0208 -.0136 - —.0513 -, 0315 -, 0250 —_— — -
52 . - —. 0419 —. (0301 —. 0038 - - —. 0319 —.0151 - —. 0488 -
.58 0149 - —. 0355 —. 0204 . 0048 - — —.0313 - —_ - -
.60 . —.0171 ~. 0205 —.0277 .0119 - - —. 0207 . 0019 —.0318 - —.0318
.85 L0284 -— —. 0205 - - 0108 -. 0150 - —. 0264 . 0090 - - -
,70 . 0352 . 0000 —. 0120 —. 0194 . 0267 - —. 0160 —.0217 0154 —.0139 —_ -
.75 0385 LT3 —. 0038 —. 0135 .0303 . 0007 - -—. 0158 L0204 —_ —.0121 —.0188
.80 — 0422 .0138 .0038 - L0338 0074 —. 0001 —. 0085 .0010 - —.0121
.82 (128 .0168 . 0066 - . 0341 . 0027 —. 0067 0249 . —. 0014 -
.81 L0432 L0177 . 0002 —. 0015 . 0347 0119 . 0053 —. 0040 . 0258 . 0058 .0010 -
.86 - 0432 .0195 0115 L0012 .0349 0137 0077 —.0012 L0262 .0079 . 0037 -
.88 . 431 0135 . 0039 0349 . 0153 . 0013 . 0285 . . 0058 —. 0013
00 L0422 .0218 0154 . 0060 0345 .0185 .0118 . (203 .0112 0077 .0010
.01 . (420 . 0160 .0073 0342 L0170 .0124 . 0050 0262 .0117 . 0085 . 0024
.02 L0414 L0228 .0168 0083 L0338 L0174 .0131 0059 . (259 .0123 . 0083 . 0034
.83 . .0228 0171 . 0092 0333 0177 L0137 0070 0255 .0127 0099 . 0044
M . 0400 L0228 0176 .0100 0326 .0179 . 0141 0076 0251 .0131 . 0105 0053
05 . 0391 L0227 0178 .0106 0318 .0178 L0142 0083 L0244 .0131 .0108 . 0059
.98 . 0380 . .0176 .0110 . 0308 .0176 .0143 . 0088 0237 . 0131 .0100 . 0086
.07 . 0367 .0218 L0173 0113 .0298 0172 .0141 . 0093 ,-0228 L0128 .0108 .0071
.08 L0351 . 0210 .0168 .0112 . 0283 . 0165 0137 . 0091 0216 .0123 .0105 .0072
.99 L0332 . 0197 .0138 0168 . 0266 0154 .0128 . 0088 . 0200 0114 . . 0088
LO0 . 0302 L0173 .0138 . 0090 .0238 .0133 0109 .0071 ~.0176 . . 0081 0054
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TABLE I—VALUES OF R;, Ri R, R—Concluded

__——Mean cerodynamic
chord

X EAN

' Y

Fiaure 5.—Limits of integration for pointed-tip wing.

After the pitching-moment coefficient is formed, the following
equation is obteined;,

Co [320 2k 2—kxy 3—3k+£"] Cs
C. 1.2¢ 20—k 2 ¢ 40—k J1C.°7
2e¢ 8(1—Ic) 0L+ de¢, 20(1—k) [eA ®

The spanwise load distribution is found from the following
integration: .

cC; _1 c"l'% £ d:c

CTTI:_C_T sim C’L

n
r 0.7 08 0.9
pis) R R Ry R’ R Ry Ry Rs R Ry

0, — —0.1284 o 0, 0200 @ —0.1384 © 0.0192 —o —0.1487 © 0.0184

.02 - —(0.5288 —.1282 0.0988 L0194 —{. 5431 —.1381 0.0941 .0185 —0. 5582 —.1483 0.0911 0177

.04 —. 4185 —. 1274 . 0425 .0178 —. 4329 -. 1373 L0397 0170 —.4479 —. 1476 . 0369 0162

.08 —. 3541 —. 1262 .0119 . 0187 —. 3686 —. 1342 . 0090 0149 —.3835 —. 1464 . 0062 0140

.08 —. 3085 —. 1248 —. 0090 .0132 —.3228 —. 1347 —. 0118 .0123 —.3378 ~—, 1449 —. 0147 L0115

.10 —. 732 —. 1231 —.0242 . 0104 —. 2875 —. 1830 —. 0272 . 0095 ——. 3000 —.1432 -, 0316 . 0087 _
JA2 —. 2445 - 1211 —. 0359 L0075 —. 2587 —, 1310 —. 0389 . 0085 -, 27137 —. 1411 —. 0419 . 0050 Y \
Jd4 - - 2202 —.1190 —. 0451 0043 —. 2345 —.1289 —. (481 . 0034 —. 2404 —. 1389 —, 0581 . 0025 oo
.16 —. 1994 —. 1165 —. 0522 0011 —. 2136 —. 1262 —. 05651 . 0001 —. 2284 —.1386 —, 0586 ~., 0008

.18 —. 1812 —. 1140 —. 0579 —. 0021 -—.1952 —. 1238 —. 0611 -—. 0031 —. 2100 —.1339 —. 0043 —, 041 i
.20 —. 1647 —. 1113 —. 0623 —. 0053 —.1788 —. 1210 —. 0656 —. 0064 —. 1938 —, 1310 —. 0889 —. 0074

.24 —. 1368 —. 1054 —. 0683 —.0116 —. 1508 —. 1150 —. 0717 —. 0128 —. 1654 —. 1250 —. 0752 —. 0139

.28 —. 1136 —. 0990 —. 0712 —.0174 -. 1274 —. 1088 —.0748 -, 0187 —. 1419 —.1184 —~. 0784 —., (0200

.32 —. 0937 —.0922 —.0718 —.0227 —. 1075 -.1017 —. 0756 —. 0241 —.1218 —.1114 —. 074 -, 0256

.38 —. 0767 —. 0851 —. 0708 - 0272 —. 9003 —. 0044 -—. 0746 —. 0287 —. 1044 —. 1040 —. 0788 —. 0304

.40 —. 0818 —. 0T -—. 0680 —. 0309 —. 0752 —. (889 —.0721 —. 0326 —. 0891 —. 0003 —.0764 -, 0343

A4 —. (488 —. 0701 =. 06842 —. 0336 —. 0619 —. 0702 —. 0688 —. 0353 —. 0756 -, 0884 —. 0729 -.0373

.48 —.0374 —. 0626 —. 0596 —.0353 —. 0506 —. 0713 —. 0637 —. 0876 —., 0637 —. 0804 —. 0085 —., 0304

.52 —.0273 —. 0547 —. 0541 —. 0360 [~ 0399 —. 0634 —. 0587 —. 0382 —. 0530 -, 0722 —. 0034 —. 0408

.56 —. 0183 —. 470 —. 0482 —. 0357 —. 0307 —. 0555 —. 0529 —. 0380 —.0434 —. 0641 —. 0577 —. 0408

.60 —. 0105 —. 0304 —. 0418 —. 0343 —. 0225 —. 0476 —. 0468 —. 0369 —. 0350 —. 0560 ~. 05616 —. 0306

.85 —. 0022 —. 0301 —. 0335 -—.0313 —. 0137 —. 0380 —. 0383 —. 0341 —. 0251 —. 0458 —. 0433 -, 0378

.70 LOH7 —. 0213 —. 0250 —. 0209 —. 0083 —. (287 —. 0209 —. (208 —. 0176 —. 0363 —. 0351 -, 0329

.75 .0102 —.0130 —.0167 -—. 0214 —. 0002 —. 0200 —. 0216 —. 0244 -.0108 —.0270 —. 0266 —, 0278

.50 0144 —. 0056 —. 0090 —. 0150 . 0046 —.0120 —. 0187 —.0181 —, 0052 —. 0186 —. 0187 —, 0213

.82 0166 —. 0028 —. 0060 -« 0127 . 0082 —. 0091 —.0108 —. 0164 —. 0033 —. 0163 —.0156 —.0180

.84 0167 —. 0004 —. 0034 —._ 0094 . 0075 —. 0063 —. 0079 —.0124 —. 0016 —.0122 —~. 0125 —.0158

.88 0174 .0020 —. 0007 —. 0088 . 0036 —. 0087 —. 0052 -, 0099 —. 0001 —., 0094 —.0101 —.0131

.88 0180 . 0040 .0018 —. 0041 . 0095 -. 0015 —. 0028 —. 0072 .0013 —. 0068 - 0072 -.0101

.80 0182 . 0058 . 0038 —. 0016 .0101 . 0007 —. 0004 —. 0048 L0022 —. 0044 —. 0047 —. 0078

.01 0181 . 0068 . 0048 —. 0006 .0103 . 0016 . 0005 -, 0033 . 0027 —. 0032 —. 0035 —. 0062

.92 0180 . 0072 . 0054 . 0007 L0104 .0023 . 0014 —. 0021 . 0031 —. 0022 —. 0024 —. 0049

.63 0170 . 0078 . 0061 0017 .0104 . 0031 .0022 —. 0011 . 0034 —. 0013 —.0017 -, 0038

.04 0176 0082 . 0087 0028 L0104 . 0087 . 0029 0000 . 0037 -, 0004 -, 0007 -, 0028

.85 0171 . 0085 0072 0035 .0102 L0042 0035 0009 .0038 . 0002 —. 0001 —. 0017

.06 0168 . 0087 0075 . 0041 . 0099 L0046 . 0040 0017 . 0039 . 0009 L0007 ~—. 0000

97 0158 . 0088 . 0078 . 0048 . 0095 L0048 . 0044 0023 .0038 0013 .0011 . 0001

.83 0150 0083 0074 . 0049 . 0089 . 0048 L0043 0028 . 0038 0017 .0018 . 0007

.99 0137 0077 . 0069 . 0049 . 00580 . 0045 . 0042 . 0027 , 0033 0017 .0018 .0011

. L00 0117 . 0002 . 0035 . 0037 . 0055 . 0038 . 0031 . 0021 0024 . 0010 . 0009 . 0007
y where ¢ is the local chord and c; is the local lift coefficient.

The integration has already been made in finding the lift.
The following equation results:

cei (G , —k Cs z 3\
610[, \OL > ( L ) 7
1+k 02 ' 03 04 04
T 076 )G ®)

For purposes of reference, the spanwise load distribution if
elliptical would be given by the following equation:

’_—————T By —

oG 10

where A=0 for the pointed-tip case. Equations (6), (8), and
(9) are now used to find values for C,/C,, Cs/Cy, Cs/Ch, and
C,/C;. The following conditions are first applied to equation

9):
(Crcgz)a- '

—2"?2 =0 (value for ellipse)
=0

2(1:)‘) (value for ellipse)
1)

where again A=0 for the pointed-tip case. These conditions
are not quite arbitrary but were chosen after trial of a
number of possibilities. The selection of these particular
conditions not only made possible a solution for the four
unknowns but also resulted in a single equation for the
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spanwise load distribution which was a fair approximation
to an ellipse. (The degree of the approximation is shown
subsequently.)

The solution for the constants may now be made. Sub-
stitution of equations (11) into equation (9) gives the follow-
ing values for (4/Cy, and Co/Cr:

C,_ 4k  1-kCs
C. (1+k=' 1+lc C,
G 4 2 G

C, (k= 1+kC;

These values are substituted into equation (6) and the follow-
ing solution for C,/C; is got:

The values of C,/C., Cs/C;, and C,/Cy are substituted into
equation (8) and the left-hand side is set equal to zero to
arrive at the solution for 3/C.. The solutions are collected
in the following equations:

O, 18

@_6 T

Cs_ 8(1+K) [34—h 1+7k+% 3z

C, 11—k L100—k) 5x(1—F) 2e¢
or

A 8(1+k)[ 7—3k 1+7k+k2__:c_' 12

CL 100—Fk) 570—F) ¢

G_ 4 2 G

OL (1+k)'ﬂ' 1+’C 0[,

Gy 4k | 1=k Cs

. QFBr’ 1+k6‘

o

The two forms for C3/C;, are given because in some cases the
center of pressure is located more conveniently with respect
to the mean aerodynamic chord ¢. The geometrical relation
between z, and 77 is indicated in figure 5; the analytical
relation is

Zo_ 27
e 3¢ 31—k

(13)

For k=0 (trianguler wing), equations (12) simplify to the
following equations:

C, 16 h
o 9%
oA 3 (6 1 3z,
C’L— 5 b 2 Cy
or
03 7 1 x! \ 14
CL 8 (-1_0 5 ¢ ( )
Gt o0
OL Kis 01;
G_G
OL GL 7
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‘When equations (12) are substituted into equation (9), the
following equation for the spanwise load distribution is

obtained:
18
2 FL(s )a—(e— )@ (15)

This equation is uniformly valid for all pointed-tip wings,
independent of the lift, center of pressure, Mach number,
and relative sweeps of the leading and trailing edges. The
load distribution given by equation (15) is compared with the
elliptical distribution of equation (10) in figure 6. As a
matter of incidental interest, the spanwise center of load on
one wing panel is located 0.409 semispan outhoard of the wing
center line for the load represented by equation (15) as
compared with & corresponding value of 0.424 for the
elliptical load.

.8
6 P '\\\\\
cey 4 // \\~
cﬁ /// }\\\
2t Equation (I5)
/ —— FElliptical load (eq.{iO)
0 1 1 L 1 1 1 1 1

10 8 6 4 2 o] .2 4 6 .8 1.0

-2

Fraurs 6.—S8panwise load distribution for pointed-tip wings compared
with elliptical load distribution.

EVALUATION OF. CONSTANTS FOR WINGS WITH FINITE TAPER

The problem of wings with finite taper can be approached
in two ways. The more obvious method is to assume that
the pressure distribution defined by equation (2) applies
over the entire wing surface and to calculate the required
warp. (A separate calculation for the warp in the tip region,
which is shown shaded in fig. 2, is required, but this calcula-
tion is not impossible to make.) The disadvantage of this
procedure is that at the tip the required wing slope takes on
very large values (theoretically infinite). A more practical
approach, and the one adopted in this report, is to relax the
condition on the pressure in the tip region. For a flat lifting
wing with subsonic leading edges, the average pressure in
the tip region is known to be close to zero (refs. 3 and 4).
It is not entirely illogical to suppose that for a slightly warped
wing the pressure in the tip will also be very small. If for
the warped wing the pressure in the tip were taken to be
exactly zero, the equations for the lift, pitching moment, and
8o forth would be derived by first integrating the pressure
distribution defined by equation (2) over the entire wing,
including the tip region, after which the integral of the same
pressure over the tip region would be subtracted. In order
to keep the equations within reasonable limits, a constant
pressure was instead subfracted from the tip region. The
value of this pressure was taken to be the value given by
equation (2) at the middle of the tip chord; namely,

P 01 __LI_ | )\(l—k) 02 1 03 3 0‘
GL OL L l 2(1—)‘) C’L ' OLj L

1 (16)

o

—
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After the foregoiilg assumption has been made, the de-
termination of the four constants proceeds very similarly to
that for the pointed-tip wing: The pressure distribution is
integrated to obtain eguations for the lift, pitching moment,
and spanwise load distribution; two conditions are set on the
spanwise load distribution, and the resulting. two equations
are solved together with the equations for the lift and the
pitching moment to give values for the constants Ci/Ci,
G/Cr, C3/Cr, and Cy/Cr. The procedure just indicated is
now given.

The lift equation, corresponding to equation (6) for the

REPORT 1226—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

pointed-tip wing, is

1=(1—4) +[3(1 ’;) N(14E)_2—ML+E) 4

30—N9) 2(1 N
142N 143\
EESV ] + sy OL an
where ik
k —
A=Trma—m (18)

In this equation, all the terms containing A arise from
integration of the pressure over the tip region, whereas the
remainder of the terms represent the integration of equation
(2) over the whole wing area. If M is set equal to zero, the
equation reduces to the form given in equation (6).

The pitching-moment equation, corresponding to equation (8) for the pointed-tip wing, is

3A—ky_ (A+HA—N’

(1+"+"2>0 {[3(1'”‘) B:I o 2P

2(1—Fk)

O:I} +<{3g(11:’;>5) (1+k)él—x)_

I:Ml —k)+2(01—N)
2(1—N)

I:)\(l—k)—l-z(l—)\)
2(1—n)

1>\T —k

NaH{(5-5)x

1—k , 3k kfa—)\) (kAN
s}

i1—5

3, K1—N_301+B0—N?
atI—F  81—R

iy

(/143 2 [1,3H1—N 3(14+k1—N? C,
{( s B c, |_2+8(1 —k) 1001—%) —0]}5 (19)
where
B SNA—R)
2(k+n)1—N) 0)
O3 Nent+BU—k)

S+m) " 2Ty i—N)

The remarks following equation (17), mth A replaced by B and C and with equation (6) replaced by equation (8),

also apply to equation (19).

Because of the existence of 8 tip region for the wing of finite taper, the spanwise load distribution must be de-
scribed by two equations, one applicable from the center line out to the begmmng of the tip region and the other

applicable over the remainder of the span:

AN1—Fk)
FOI‘ 0§ 0'§ 1—'0?_17)(1_—)\):
MN1—Ek)

For l—m_—)\) =¢=1,

{(1+n)(1 N OIJ_(I—k)z—[Z—)\(l-l'k)][)\(1+n) (k+n)] C: I:R(H'n) (Ic—l—n) 04)} {(1+n)(1 —N 01
C,C'L, 20—k —N) . 1—k Cp

=Nk —B)—2(k+n) N1+ E)(k+-n)] Cs  1—k)—(1—N(k+n) Cs 03 A—=Nk+n) 04}

—BHA—N o 1—F T AL v
I:(l_l_k?—)fl N 02-[—(1 - _CT'—'U:IO} a—» (74 (21b)
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The conditions given in equations (11) are now applied to equation (21a) to obtain the following relations:
0. Q+hr = x)(1 50, )
Os_4(1—N) 2 (4 23
G, QB 1+E G, @3)

These values of C,/C, and C;/Cy are substituted into equation (17) and equation (19).

The center of pressure is fixed

at xy by putting Cp, equal to zero in equation (19) and the following equations for Cs/C. and C,/C. are obtained:

C, 8(1+N)

S(1HN—4 | (4—2N)(1+N)
0, (13N —601TNA [1_ R f A] (24)
A=BUANNE) O <1+3x zo_[1, 8H1=)) 304+B1—N 0]
8A—N(1+k G { e, |27 40—k 100—k)
e { B~ —C-Na+B) 2
[(H=PE—GHIEHN QN5 06T} 25)

where A, B, and C are defined in equations (18) and (20).

Equations (24) and (25) can be solved for C,/C. and
C4/Cy, after which Ci/Cy, and C,/C, can be found from equa-
tions (22) and (23). This calculation is best done with the
numerical values for A, k, n, and zo/¢, for the particular wing
under consideration. The procedure is illustrated by an
example in a subsequent section entitled ‘‘Numerical Ex-
amples.” The relation between zo/c, and z7/¢ corresponding
to equation (13) for the pointed-tip wing is

Zo 21HNMN) T, 142N
e, 304N T ' sa+na—h

(26)

. The spanwise load distribution corresponding to equation
(15) for the pointed-tip wing can be obtained by substituting
equations (22) and (23) into equations (21a) and (21b).
The substitution into equation (21b) produces only added
complexity, and the result is not given herein. The sub-
stitution into equation (21a), however, gives the following
=B .
(k+n)(1—N

2(1+x) [2(1 N (AN 0,.]"2 (1— >\) 1@ @)

simplified equations for 0<o<1—

CCy

¢ OL

Unlike the spanwise load distribution for the pointed-tip
wing, the load distribution for the finite-taper wing cannot
be compared with an elliptical distribution for all wings but
must be compared separately for each example investigated
because of the form of equations (27) and (21b). The
elliptical distribution is still given by equation (10).

NUMERICAL COMPUTATIONS
DEVELOPMENT OF FORM FOR COMPUTATION

After numerical values have been found for the constants
C\/Cr, GofCr, Cs/Cy, and C/C;, these values are used with
equations (4), or rather with the numbers in table I com-
puted from these equations, to find the =z-displacement
corresponding to each component of the pressure distribu-
tion. The four displacements are then added to produce the
final shape of the warped wing. In principle this process is
straightforward so that in practice it may be reduced to
routine computation. A form suitable for such computation
is now developed. The particular form presented is one such
that, at a given spanwise station o, the z-ordinate as a
fraction of the local chord ¢ is given as a function of z’/e, the
fractional distance behind the leading edge of the local chord.
As a typical example, the z-ordinate corresponding to the
second term of equation (2) is considered. From equation
(4b) the following relation is written:

&)

The following geometrical relations are easily verified:

A ot
1—k

02 me,

OLC 201, 8

z
o [1—o(1 —)\)]

=1—o(1—N\)

me, 1—k

8 1—X




so that
mz_p O (1=FHl—o1—N] {z’ a(1—X) }’
C.c C 1—A ¢ "A—hi—cd—N)]
Now if A, is defined as
o a1—»)
Ao= T BIT—oT—N)]
then
o (1—B[1—c(1—N)]
1—\
and it can be shown that
AO z 1 a-(l_>‘) z ]
P B T ) R R @8)
so that
m 22 02 [ Ao 2
G 2=ty () @9)

Thus, at a particular spanwise station o on & given wing,
2/c is a function only of r (since R as a function of r is known
from table I). From equation (28), z’/c is also a function
of r; thus,

4,

c

so that z/c can be calculated for various values of 2’fe. B,
experience, it has been found that the most satisfactory
way of choosing values of r to use in the computations is
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to;plot, for the particular wing under consideration, z’/¢
against r (for the various values of o) from equation (30).
Only)values of 2’/c between 0 and 1 are of interest. This

y|” Tact determines, for each o, the range of r to be used, and

from the values of 7 used as arguments in table I those
which give a satisfactory distribution of points along the
chord are chosen. Relations similar to equation (29) for
the other z-components can be derived; these relations are

m 21 01 Ao 3
Ce 'Cr

_171 23 Ao

emng 4 (F)
rt () ()
OL A, r J
The amount of warp is seen to be directly proportional to
(. and inversely proportional to m (for & given n).

For some purposes, the wing shape can be more conven-
iently expressed in terms of zfe, and z/¢, rather than in

terms of z/¢c and 2’f/c. This conversion is easily made by
use of the following equations:

(31)

mZ.;
C’LC

z 2
o 1—e@—N] -

(32)

T o g%, d@d—N
o Lo U=NITHT—

TABLE II

COMPUTATIONAL FORM

A= k= n= Cu=0 at §=——-—
m=——- M= CL_ %
o) G Cs C
CL - G CL CL
_ a(1—2) = o KA ’=
’ A=Rl—e(—N]" 4 4 &)=
® |® @ ® ONNCENO ® @ @ @ ® ‘| ® ® - ® ®
From table I z/c z'[c- zfc, z/c.
OF (OF OX@@X@@X@QX@ .
r |4 o \3 al-c c | 9+®
X | %(= x4 x& | & | <&\ G e ®X[1—e(1—W)]
sumed)| O | "4 (‘4*’) By |Ra | Ra|Ri| ~Ce) 7G| 0 TG X Coiml @ 44 Xi—sa—n1|  + e
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The foregoing equations are embodied in table IT, which is
solf-explanatory. This form has been used to compute
several examples, some of which are discussed in the next

section.
NUMERICAL EXAMPLES

Example I.—The first example chosen has the following
characteristics:
n=0.6
k=0.6

A=0

Z 025
c

C,=—0 at
This set of characteristics represents a sweptback wing,
tapered to a point at the tips, with the center of pressure a
little more than 50 percent of the mean aerodynamic chord
ahead of the location for the corresponding flat wing. The
lift coefficient, sweepback angle of the leading edge, and
Mach number are not specified; the final amount of warp
is directly proportional to the lift coefficient, and any
combination of sweepback angle and Mach number that
gives n=0.6 may be chosen.
The four constants are found from equations (12) to have
the following values:

G,
@;‘4‘4530
G

oA 19.0819
O
FL_15.9021
0“=0.9071

L

Soveral values of o are selected and, for these values, plots
of z'/c against r are made from equation (30). Slide-rule
accuracy is sufficient for these calculations, and only a few

THATT TR T
AELNAY B\ ARV
LA Y\

/L1~
W L1

N
N
—

0 2 4 B 8
r

Frqtmn 7.—Plot of z'/c against r for example I,
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.6

L
x'/c
Fiaure 8.—Wing shape for example I with ordinates expressed as

' fractions of the local chord c.
points need be taken to define the curves. The resulting
curves for example I are shown in figure 7. These curves
are used to pick values of » from table I. The corresponding
values ot R, R;, Rs, and R, from table 1 are entered in table
10, together with the other necessary data, and the indicated
computations are carried out.

The results of the computations are shown in figure 8, in
which the ordinates are given as fractions of the local chord
and the origin of the axes is at the leading edge of the local
chord for each value of ¢. Several features of the wing are
evident from this form of presentation: namely, the reflex
curvature of the airfoil sections near the center of the wing
(the angle of attack is infinite at the center line), the disap-
pearance of this reflex curvature at outboard sections, the
relative twist between inboard and outboard sections, and
the (variable) dihedral. A better picture of the actual wing
is obtained by plotting the results as in figure 9. In order
to give more physical meaning to the picture, the results
have been plotted for a lift coefficient of 0.2 and a leading-
edge sweep of 60° (m=0.577). This last value thus corre-
sponds to & Mach number of 1.44 since 7= is equal to 0.6.
There are two points worth mentioning with regard to figure
9. The first is that, within the accuracy of the linearized
theory used in this report, an arbitrary z(¢) may be added
to the vertical ordinates without changing the aerodynamic
characteristics of the wing. As pointed out in reference 1,
this procedure is permissible so long as the resulting wing
does not lie far from the z=0 plane (that is, modification of
the wing shape by addition of a set of ordinates which de-
pends only on o (not on z) may be practiced in moderation).
The practical significance of this point is that the wing shape
may be modified by this procedure to simplify the problem
of locating spars. The other point is that for most configura-
tions the inboard stations of the wing, which are those having
the largest warp, are buried within a fuselage and, therefore,
present no structural problems. (The effect of the fuselage
on the aerodynamic characteristics is discussed subsequently.)

0 .2 4
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F1aurE 9.—Wing shape for example I with ordinates expressed as fractions of the root chord ¢,. Cr=0.2; m=0.577; M=1.44.
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Ficure 10.—Pressure distribution for example I. Cp=0.2; m=0.577; M=1.44.
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This particular example and presumably others not too
extreme should therefore be quite practical to build.

The pressure distribution for this example is shown in
figure 10. Because of the far-forward specified location of
the center of pressure, part of the wing carries negative lift.
The spanwise distribution of load is that shown already in
figure 6.

Exemple II—The second illustrative example has the
following characteristics:

n=0.8
k=0
=0

O.=0 at %’=0.50

-3
o]

L
0
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The values k=0 and A=0 characterize a triangular wing.
The center of pressure is at the same point as the center of
pressure of the corresponding flat wing. The purpose of the
present design is to show the kind of;warp that might produce
a wing with essentially the same center of pressure and span-
wise load distribution as the flat triangle but without the
steep pressure gradients that are known to promote leading-
edge separation on the flat triangle, at least at low Reynolds
numbers. A constant-pressure friangular wing, of course,
has the same center-of-pressure location as a flat triangle and
has no adverse pressure gradients, but the spanwise load
distribution of such & wing is triangular rather than elliptical.

The method of computation is much the same as that used
in the previous example. The principal difference is that
equations (14), rather than equations (12), may be used to

101

x/c,

x/c,

‘Fiaurs 11.—Wing shape for example II.

413672—57T——31
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find the following values for the four constants:

C,
FL-.1.0907
Cs
@_—0.9082
0’:1.0907

L
C,
—@_0.9071

The results of computations made with tables I and II are
presented in figure 11. These plots clearly depict & wing
the main part of which is almost flat and which has a turned-
down leading edge, & small twist from root to tip, and almost

20
o =080

\
\
N

a4t
o 2 4 - 8. 10
Ve
or
.8f
-6 o
o
.4 -
2r / =
/ _ [Lenter of pressure
1 1 1 ‘ID 1
o 2 4 & 8 1.0
Xt

F1GURE 12.—Pressure distribution for example IT.
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constant dihedral angle along the span. For ease of manufac-
ture, this dihedral can be removed without affecting the
aerodynamic characteristics very much. (See the discussion
of this point under example I.) The pressure distribution is
shown in figure 12; the chordwise gradients of pressure are
not large. The spanwise load distribution is again given by

figure 6.
Example III.—The third example chosen is a wing with

finite taper, characterized by the following conditions:
n=0.7
k=0.6
A=0.4

Co=0 at %’=0.25

These values are substituted into equations (18), (20), and
(26) to obtain the following values: )

?40.82857

T

A=0.05861
B=0.12308
C=0.20986

Substitution of these values into equation (24) gives

o,
Cr

Substitution of this value into equation (25) gives
Cs
(oA

—=—0.1814

=4.7438

The remaining constants are obtained by substitution of this
value of C3/C;, into equations (22) and (23); thus,

Cy_
o= 5.2614
. 0‘=2.6451 !

L

From this point the method of calculation is the same as that
used in the two previous examples: suitable values of 7 are
chosen, and the form of table IT is followed to arrive at values
for the wing ordinates. - The resulting wing shape is shown
in figure 13 together with the pressure distribution; the
results have been plotted for a lift coefficient of 0.4 and a
leading-edge sweep of about 59° (m=0.6), corresponding to a
Mach number of 1.54. The center-of-pressure location
shown in the figure for the flat wing was found from reference
5. The wing shape is not extreme, and the previous remarks
concerning the removal of the dihedral angle apply equally
well to this case so that the wing can be built feasibly. The
pressure plot shows the result of the assumption regarding
the pressure in the tip region.

The following spanwise load distributions are found from
equations (27) and (21b):

For 0= 0<0.795,

——0——0 .891—0.50263--0.1094
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For 0.795 =c=1,

CCy
e Cr

=2.82—2.440—0.495°4-0.114°
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the opposite wing panel.
following inequality:

This condition is expressed by the

"R
In addition, because of the approximate nature of the
assumption rega;:-d.inn;the pressure in the tip region, cases in
which the tip regioncovers a large part of the wing should be
viewed wit tion.
g time.—The exact time required to compute a
ample depends on such factors as whether A or k or
are equal to zero and the number of points taken to
e the wing surface. The following time estimates are
/given gs representative of those required by using & manually
operated calculating machine. To calculate the constants,
% to 1 hour is required, and to celculate eight spanwise sta-
tions, with 14 points along the chord at each station, 8 to
12 hours. ‘

Body effect.—In the derivation of the present method, the
wing has been considered as isolated; whereas, in practice if
is usually mounted on a body, on which may also be mounted
a tail. The available information, both theoretical and
experimental, is not yet sufficient to allow an accurate
quantitative prediction of the effect of the body for the
general case. (See refs. 6 and 7 for a discussion of the prob-

39
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Fiaure 13.—Wing shape and pressure distribution for example III.
Cr=0.4; m=0.6; M=1.54,

These equations are plotted in figure 14, which also shows an
elliptical load distribution for comparison. The load distri-
bution for the example being discussed is a fair approximation
to the ellipse so that no large drag increase relative to the
flat wing is to be expected as a result of the specified forward
location of the center of pressure. As a matter of fact, the
spanwise load distribution of the flat wing is itself not
elliptical, so that the drag of the warped wing might well be
less than that of the flat wing.

NOTES ON PRACTICAL APPLICATION

Range of applicability.—The method described in the pre-
ceding sections is directly applicable to wing plan forms of
the types shown in figure 1. The locations of the various
Mach lines shown in the figure relative to the leading and
trailing edges and relative to_the center line are significant.
The leading edge must be subsonic and the trailing edge must
be supersonic; these conditions are expressed by the following
inequality:

‘1znz| (33)

For the case of pian forms with finite tips (A#£0), the Mach
line from the leading edge of one tip must not cross over to

Tem.)[Some qualitative estimates can be made, and by
reference to whatever experimental date may be available
urations resembling the particular example under
consideration rough quantitative corrections can be applied
for the effect of the body. If the wing is mounted on the
body so that the chord line at the juncture is parallel to the
body center line, then the lift of the combination' when the
wing is at its design position with respect to the free stream
will probably be close to the sum of the lifts o‘f\t}}e_{‘ isolated
wing and the isolated body. If, however, the tws aré coli-
nected so that when the wing is at its design position yith
respect to the free stream the body-is at gefo angle of at%ﬁfg};,

1

1.0 - T — t
e 5
\\
]
% ‘ \\ . S
\ 8 T~ I
- : ’ \ Jot [
‘\ [ ! ‘ ~
\\ 1 Y
6 NN e
. N\ T
£q N
&G - \ .
4 AR
N\
.2 \\
Load for example T 1 \\
———— Elliptical load '
1 1 1 1
0o ’ .2 4 .6 .8 1.0

-

Fravre 14.—Spanwise load distribution for example ITI compared
with elliptical load distribution.
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then the lift of the combination will probably be somewhat
less than the design lift of the wing. In all cases, the center
of pressure will probably be somewhat more rearward than
that calculated when only the isolated components are con-
sidered. If these foregoing statements, which are obviously
conjectural in pature, are accepted, then some allowance
can be made for the effect of the body by adjusting the
design conditions of the wing. The body-interference prob-
lem is neither different nor more serious for the warped wings
considered in this report than for conventional flat wings,
and all the preceding remarks apply-equally well (or poorly,
as the reader may judge for himself) to both types of wings.

Off-design operation.—In the course of a flight, the wing
may be required to fly at the design Mach number at atti-
tudes other than that for which it was designed. Within the
limits of the linearized theory used in the analysis, the prin-
ciple of superposition applies. The lift (and pitching
moment) of the warped wing at an attitude different from
the design condition is therefore simply the design lift and
pitching moment plus (or minus) the lift and pitching
moment of a flat wing of the same plan form at an angle of
attack equal to the angular deviation of the warped wing
from its design attitude. When the wing is required to
operate at Mach numbers other than the design value, how-
ever, no simple method is available for estimating the change
in aerodynamic characteristics, and even to calculate the
properties by the use of the linearized theory is a practicably
impossible job. An experimental test is the only way to find
the answer.

Applicability to other problems.—Although the derivation
of the complete method has been limited to wings of the
types shown in figure 1, with approximately elliptical span
loads, the basic results presented in equation (4) and table I
are applicable to other wings as well. For example, a
derivation similar to that presented in this report could be
made for sweptback wings with cross-stream tips, such as
that shown in figure 9 of reference 3. It is also conceivable
that in some cases the shape of the spanwise-load-distribu-
tion curve might be determined by some condition other
than that of low induced drag. The information presented
in equations (4) and table I could be applied to such cases.

As an example of an application of the basic data of equa-
tions (4) to a problem of a type different from that discussed
in the section entitled “Numerical Examples”, the design of
a triangular wing with approximately elliptical loading in
both the spanwise and the chordwise directions is discussed.
For convenience, this wing is called example IV. ~ (In ref. 8,
Jones has shown that, for & lifting surface of narrow propor-
tions lying near the center of the Mach cone, the minimum
value of the drag due to lift is achieved when both the span-
wise and .the chordwise loadings are elliptical.)

The chordwise load distribution is found from integration
of equation-(2) to be given by the foHowing equation:

o A ORHAC R

Total Iﬁ t- OL c,-
If, as in the previous exa.mples ‘the condltlons of equations
(1 1) are apphed to equation (9), then the spanwise load dis-
tribution is given by equation (15), and-the values of (1/Cy,
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G;/Cy, and C,/C;, are those of equations (14): namely,

G_0

& G,
G_4 G
CL_ﬂ' CL
, 16
AR

Substitution of these values into equation (35) gives the
following equation for the chordwise load distribution:

o 2+ (232 (D) +(-52) (%)

Total ift ~Cp o T
The chordwise load is now specified to be zero at the trailing
edge (£-=1>- This procedure gives the following value for

Co/C:
03 8

T3_g

OL 3 ki3

and the chordwise load becomes

Local lift 8\ z AVEAY 16\ /z\?

Toatir=(-52) 2—(0-2) () +(-5) (3) @
The load distribution given by equation (36) is compared
with an ellipse in figure 15. The spanwise load distribution
is also repeated from figure 6 for the sake of eagy comparison.

The wing shape is readily calculated from tables I and II
and is shown in figure 16 for (;,=0.2, AM=1.2, and n=0.3.
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‘Freurs 16—Load distribution for example IV.

The drag coefficient for these conditions has been found by
graphical integration to be approximately Cp=10.0081
The drag coefficient of a flat wing at the same conditions it
0.0091 if full leading edge suction is assumed or 0.0161 if nc
leading-edge suction is assumed (no leading-edge suction ha.
been assumed for the warped wing).
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Tieure 16.—Wing shape for example IV. Cp=0.2; M=1.2; n=0.3.

CONCLUDING REMARKS

A method has been presented for designing a sweptback
wing to have certain specified flight characteristics at super-
sonic speeds. For example, a wing of given plan form,
operating at a given supersonic Mach number, may be
designed to have a specified lift coefficient, a specified center
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of pressure, and a nearly elliptical spanwise load distribu-
tion. As an aid in the calculations required for any specific
case, certain basic data and a computational form are pre-
sented as tables. The procedure is illustrated by several
examples.

LANGLEY AERONAUTICAL LABORATORY,
NaTioNAL ApvisorY COMMITTEE FOR AERONAUTICS,
Lawncrey FieLp, Va., May 11, 1951.
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